
RADIATION FROM JET COMBUSTOR FLAMES 

By R. M. Schirmer and E:C. Mil ler  
Ph i l l i p s  Petroleum Company, Bart lesvi l le ,  Oklahoma 

Radiant energy from a i r c ra f t  gas turbine type combustion processes was 
investigated using a laboratory scale  combustor i n  which two paraff inic  and tm, 
aromatic t e s t  fue ls  were burned a t  combustor pressures f r o m  one t o  f i f t een  atmos- 
pheres, Infrared flame m i s s i o n  and absorption spectra  f r o m  0.5 t o  1 5  microns i n  
wavelength were oEtained. 

The average transverse emissivity of t he  infrared spec t ra l  region ranged 
f r o m  0-03 for non-luminous flames t o  near ly  one f o r  luminous flames. Transverse 
flame emissivity increased with pressure and i n  general, flame emissivities were 
higher fo r  the aromatic fuels. 
represented a s  much a s  t e n  per cent of t h e  t o t a l  energy released in luminous 
flames, 

Radiant energy t ransferred t o  t h e  combustor par t s  
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RADIATION FROM JEP COMERISTOR FLAMES 

By B. 1. Schlrmer and E. C. Mil ler  
P h i l l i p s  Petroleum Company, Bart lesvi l le ,  OkLahora 

Character is t ics  of t h e  energy radiated from a i r c r a f t  gas turbine type 
combustion processes were invest igated using a laboratory scale combustor. Two 
paraff inic  test  fuels,  normal heptane and isooctane, and t w o  aromatic t e s t  fuels, 
benzene and toluene, were evaluated. Three drifferent t e s t  conditions were 
selected having operating pressures of 40, 150, and 450 inches of mercurg absolute. 
Infrared flame emission and absorption spectra, from 0.5 t o  1 5  microns in  wave- 
length were obtained at five different locat ions around the  combustor. This  was I 

also done without combustion, and without fuel;  
absorption spectra. 

t o  obtain fuel,  and air, 

The average transverse emissivity of the  inf ra red  spec t ra l  region for 
non-luminous flames was approxhate ly  0.03; but it increased, with increasing 
flame luminosity, t o  near ly  one. The t ransverse emissivity of the  flames in- 
creased with increasing combustor pressure. In  general, flame emissivities o f  
the  ammatic fue l s  were higher than those of the  paraf f in ic  fuels ,  Energytrans- 
fe r red  by radiat ion t o  combustor par t s  was an appreciable portion of t he  t o t a l  
energy released in luminous flames, varying f r o m  less than one per cent t o  
greater than ten per  cent. 

Total radiat ion pyrometers must include t h e  1 t o  5 micron spectral  
region t o  give reliable indicat ions o f  the  t o t a l  infrared radiat ion emitted by 
j e t  combustor type flames. 
substant ia l ly  more r e l i a b l e  r e su l t s  than  quartz optics ,  
t ions  are made t h r o u a  long columns of exhaust gases, it may be necessary t o  take 
into account t he  absorption due t o  the  combustion products and smoke. 

For low luminosity flames sapphire optics will give 
If  pyrometric observa- 

The emissivity of t he  carbon dioxide 4 t o  5 micron band was nearly one 
over a l a rge  range of operating conditions and fue l  type. Indications a r e  that 
t he  in tens i ty  of rad ia t ion  i n  t h i s  spec t ra l  region should serve as a good i n d e x  
of the  flame temperature, s ince it would be essent ia l ly  independent of flame 
luminosity and atmospheric absorption, i f  a narrow band-pass pyrometer were used. 



I, INTRODUCTION 

The b r i l l i an t ly  luminous flames observed with a l l  t e s t  fuels, whether 
Paraff inic  o r  aromatic, have been among t h e  more prominent e f f ec t s  observed in 
combustion studies a t  pressures above t e n  atmospheres. A t  such pressures combustor 
flame tube deposits have dropped t o  very low leve ls  i n  the  face of incyeased 
carbon formation as shown by measurements of density of exhaust gas smoke. However, 
reduction i n  deposits a t  such pressures are  acconipanied by bucuing  of combustor 
liners, dis tor t ion o f  t h e i r  primary a i r  inlet holes, and l o s s  of m e t a l  from their 
exposad surfaces. 
temperature resul t ing from more intense flame radiation, 

r a t i o  turbojet  powerplants, that a more detailed study of t he  charac te r i s t ics  of 
the  radiant energy emitted fromtwo-inch diameter j e t  combustor flames might be 
both worthwhile and timely. Work by two other invest igators  (1,2) has a l so  shown 
increasing pressure t o  cause mre intense heat t ransfer  f r o m  t h e  flame zone 
(primary combustion zone) t o  the  surrounding metal w a l l s ,  using full scale  
combustor cans a t  pressures between one and three atmospheres. 
much higher radiation in tens i t ies  f r o m  yellow or luminous flames (containing 
glowing par t ic les  of f ree  carbon as  individual radiat ing centers) compared t o  tha t  
from blue or non-luminous flames was mentioned. 
formation of f ree  carbon in flames i s  favored by high operating pressures. Ther- 
fore  t h e  work was planned t o  emphasize Pealism of t h e  combustion environment, 
par t icular ly  with regards t o  pressure. 

It was decided t o  es tabl ish whether t h e  use of quartz windows t o  protect 
t o t a l  radiation pick-ups f r o m  t he  high combustor pressures and temperatures (as 
was done for  t he  work of Reference 1) was permissible from t h e  energy transmission 
standpoint, That is, is there  appreciable radiant  energy emitted a t  wavelengths 
longer than three microns in t h e  infrared region, beyond which quartz f a i l s  t o  
transmit appreciably? Work discussed i n  Reference 3 using atmospheric, bunsen 
burner type flames suggestedthat  t h i s  long wavelength radiat ion comprised a large 
part  of t he  t o t a l  radiant energy emitted. 
had t h e  objectives o f  determining detai led radiant enerw-versus-wavelength re- 
la t ionships  by the  use of spectroscopic instrumentation, f o r  fue l s  spanning a wide 
range of hydrocarbon type, at combustor operating conditions representative of 
(1) ramjet, (2) current turbojet  and (3) fu ture  turbojet  powerplants. 

These were considered t o  be manifestations of higher metal 

It was f e l t ,  i n  view of industry trends towards re la t ive ly  high pressure 

In  both cases t h e  

It is, of course, known t h a t  t h e  

The experiment& program which evolved 

Pure hydrocarbon t e s t  fue ls  were used t o  insure tha t  differences i n  

Table I l is ts  character is t ics  of the  four fue l s  selected - 
These re la t ive ly  non-viscous 

flame radiation produced by gross differences in hydrocarbon s t ruc ture  would be 
clear ly  evident. 
normal heptane, isooctane, benzene and toluene. 
vo la t i l e  fuels were chosen t o  minimize, o r  at least render constant, t h e  e f fec ts  
of l iqu id  atomization and vaporization on carbon formation and, hence, flame 
radiation. 

The schedule of operating conditions chosen for t h i s  work is  shown by 
Test condition 40 i s  a combination of low absolute pressure and high Table II* 

M e t ,  air velocity representative t o  some extent of ramjet type combustion 
systems. 
expected t o  burn with blue, smokeless flames. 
differences might exist between fue l s  i n  radiant energy so le ly  of t h e  molecular, 
o r  n o n - l d n o ~ ~ ,  type. 

It was selected a s  a %asell condition a t  which a l l  four  fue l s  were 
It therefore  served t o  show whether 



Test condition 150 was chosen t o  s h i l a t e  the type of combustion environ- 
ment provided by turboje t  engines of re la t ive ly  low pressure r a t i o  a t  sea level 
conditions, or by engines of higher pressure r a t io  a t  high a l t i tudes .  Past o b  
servations have shown flames produced under conditions such a s  t h i s  f r o m  t he  two 
aromatic t e s t  fue l s  t o  be en t i r e ly  luminous in appearance, while t h e  two paraff inic  
t e s t  fue l s  produced semi-luminous flames havring both blue and yellow regions. 

Test condition 450 simulated the  type of conditions encountered with high 
pressure r a t i o  turbojets ,  pa r t i cu la r ly  a t  low a l t i t ude  corditions. Pressure was 
the  only variable changed here  from condition 150, s ince a corresponding increase 
i n  inlet a i r  temperature (desirable  fo r  str ict  realism) was decided against because 
of doubts concerning the  a b i l i t y  of the  potassium bromide windows, through which 
the  flame radiat ion measurements were taken, t o  withstand temperatures much above 
400 F. M e t  velocity, too, was constant f o r  both conditions 150 and 450. A 
velocity of 100 f t / sec  was chosen a s  a reasonably val id  compromise betwedn c o s  
di t ions  i n  older, low pressure r a t i o  engines (60 - 80 ft /sec) and i n  newer, high 
pressure r a t io  uni t s  (125 - 180 f t /sec) .  

I 

/ 

Fuel-air r a t i o  w a s  maintained constant a t  t he  intermediate level of 0,010 
f o r  all three t e s t  conditions, f a c i l i t a t i n g  h t e rp re t a t ion  of t he  rad ia t ion  data 
f o r  conditions 150 and 4.50 on the  basis of  pressure alone. 

111. MP-AL SEP-UP 

A. Combustor D e t a i l s  

The combustor tes t  f a c i l i t y  was bu i l t  around a compressor p lan t  capahle 
of supplying air at mass flow ra t e s  up t o  2.5 lbs/sec and pressures f r o m  4 t o  500 
in. Hg abs t o  a bat tery of e l ec t r i c  resistance heaters, with which combustor inlet 
temperatures up t o  1000 F could be attained. From these the  air passed t o  t h e  
combustor inlet piping shown in Figure 1, which also gives the  locat ion of t h e  
test combustor i t s e l f  and t h e  s ta t ions  a t  which the  flame radiation measurements 
were made. Fuel was introduced into the combustor by pressure atomization through 
a conventional swirl type nozPe,  while air for combustion and cooling entered 
through holes in t h e  flame tube and nozzle holder. 
from heavy walled (Schedule 40) s t a in l e s s  s t e e l  (Type 304) Z inch  pipe t o  resist 
dis tor t ion  and warping in t h e  presence o f  extrane var ia t ion  i n  operating conditions. 

These flame tubes were made 

A sketch of the  flame tube i n  t h e  cornbustor t e s t  section is shown in 
The transverse spectroscopic observations on the  flames were made 

The 
Figure 2. 

s ta t ions  numbered 1, 2, and 3 indicate  t h e  locat ions used along t h e  axis of the  
flame tube. These numbers will be used throughout t h i s  report t o  designate these 
observation stations. Transverse observations were also made downstream from the 
flame quench holes i n  the  combustor exhaust gas stream a t  the  s t a t ion  numbered 4. 

through l / l r inch  air i n l e t  holes located diametrically across t h e  tubeo / 

Axial observations-from the  exhaust end were made through an observation 
window i n  the exhaust elbow approximately 45 inches downstream f r o m  t h e  flame tube. 
This s ta t ion  i s  designated as s t a t ion  5.  
was obtained from t h i s  s ta t ion .  

An unobstructed axial view of t h e  flame 

B. SpeCtrODhOtOmeteP D e t a i l s  

A Perkin-mer  12C spectrophotometer which provided a convenient means 
for obtaining both t h e  emission and absorption spectra of t he  flames was used. 
The spectrometer was mounted on t h e  laboratory sca le  jet  combustor t o  form t h e  
jet-combustor-spectrophotometer. 
spectrophotometer was oDerated by means of controls located outside t h e  tes t -cd l .  

In t h e  in te res t  of safety and convenience the  



The equipment located inside t h e  tes-c-coil tras a n i e c t x i  LLLKI 1;:~ control, xipli-  
fying, and recording system located outside the t e s t - ce l l  by a 2 j  foot cable. 

A schematic diagram o f  t h e  jet-combustor spectrophotometer i s  shown i n  
Figure 3. 
1/4-inch diameter a i r  i n l e t  holes through which t h e  spectra were obtained. 
obtain absorption spectra a f i r s t  image of the Globar source was projected by 
mirror ML and l ens  Ll (aperture 3/4-inch) a t  t h e  center of t h e  combustor. An 
image of t h i s  f i r s t  image was projected by lens  L2 (aperture 1/2-inch) onto t h e  
slit o f  t h e  monochrcmator. 
by t h e  l i g h t  chopper C1 with chopper C2 set  in t h e  open position. 
radiation was dispersed by t he  monochmmator and detected by t h e  thernocouple 
receiver. The 13 cycle olltput from the  thermocouple was se lec t ive ly  amplified. 
This amplified signal was synchronously r ec t i f i ed  by breaker points attached t o  
the  shaf t  of the  chopper C1, The result ing d-c signal, proportional t o  the amount 
of radiation f a l l i ng  on the  themcouple ,  was recorded. Radiation a r i s ing  between 
t h e  chopper C1 and the thermococple receiver w a s  r e j e d e d  unless it happened t o  be 
modulated at 13 cps and had the  prcper phase. 
thermocouple was derived from t h e  Globar source and passed through the flame i n  
the  combustor permitting absorption measurements t o  be made. 
by continllously sarying the  wavelength passed by t h e  monochromator over t h e  spectral 
region desired. 

The two-inch diameter flame tube within t h e  combustor t e s t  section had 
To 

The radiation fmm t h e  Globar was modulated a t  13 cps 
This modulated 

The modulated radiation reaching the 

Spectra were obtained 

Rnission spectra were obtained by se t t i ng  C1 in the closed posit ion and 
modulating the  radiation leaving the  conbustion chamber by means of chopper C2. 
The amplified signal f r o m  t he  dexector was synchronously r ec t i f i ed  by breaker 
points attached t o  the  shaft  of C2, In this case, only rad ia t ion  or ig ina t ing  
between C1 and C2, i n  t h e  flame tube, was modulated and was thus recorded. 
this arrangement the emissicn o r  absorption spectra could be obtained by activating 
t h e  proper chopper and breaker points. 

With 

The lenses Ll and L2 of potass im bromide with a foca l  length of 5.33 
inches were separated from the  combusr;ion chamber by pla tes  of potassium bromide 
one centimeter thick,  
fittings attached t o  t h e  combustion chamber, 
window and the  combsstion chamber a s  shown i n  the  diagram t o  cool t h e  potassium 
bromide p la tes  and t o  prevent depcsition of water, o i l ,  carbon, etc,, on t h e  
windows. 

The p la tes  were sealed by m e a n s  of p l a s t i c  O-rings t o  
D r y  air was injected be$ween t h e  

Iv. I N F W  SPECTRAL MEAsmms 

Fkission and absorption spect:t--a were obtained a t  s ta t ions  1, 2, 3, and 
The four fue l s  described 49 but only the  emission spectra were obtainable at 5. 

in Tahle I were investigated f o r  each of these observation s t a t ions  along t h e  
combustor under the  th ree  conditions specified i n  Table X. 

A,  Fhission Suectra 

The short wavelength spec t ra l  region, 0.5 t o  5.5 microns, was scanned 
with a constant monochromator sl i t  widzh (0.100 millimeters). 
of data and maintain reasonable rezorder deflections for  non-luminous flames a 
portion of t he  long wavelengbh spec5rum, 1 t o  12.5 microns, was scanned with a 
constantly increasing monochrmator s l i t  width which varied l i nea r ly  from 0.22 
millimeter a t  4 micmns t o  2.0 millimeters a t  12.5 microns. 
held constant a t  2.0 millimeters from 12.5 t o  15 microns, The slit was continuously 
opened according t o  t he  prescribed schedule by using synchronous motors for driving 
t h e  monochromator wavelength scanning mechanism and for opening t h e  monochromator 
slits. 

To expedite taking 

The s l i t  width was 



F i y r e s  4 t l imu& 7 a r e  sncrt k-2veler.sh d s s i o n  spectra of n o m  
h q t a i e ,  isooctane, benzene, and toluene f l a e s ,  respectively. The combustor 
operzting conditions, &Os 150, 
spectra were obtained a t  t h e  observation s ta t ions  1, 2, 3, and 5 reading from 
l e f t  t o  right a s  labe led  zt the  top of t he  fi-gxes. The a s s i o n  spectra 
obtained a t  t he  post cosbustion lo:ation, s t a t ion  4, a re  shown separately in 
Fi,gre 8 because of t h e i r  r e l a t ive ly  low intensity,  

450, a re  in2iczted on t h e  sgectra, These 

% evidence o f  abnonzal radiation patterns,  other than extensions of 
t h e  black body type of radiation, were noted in the  v i s ib l e  region down t o  0.5 
nicrons o r  in  the  inf ra red  region beyond 5 dcrons .  T'nerefore, de ta i led  spectra 
are preserited onlr f o r  t h e  near infrared r e d o n  from 0.9 t o  6 microns, 

/ 

Tne var ia t ion  in t h e  4.4 e c m n  peak in t ens i t i e s  f o r  t h e  spectra a t  
s t a t iocs  1, 2, 3.d 3 under conditions 1% acd 450 
150 is  pro'ublq- a good rseasure of the reproducibil i ty of t h e  ali.gnizent and other 
i n s t m e n t a l  factors. Variations in f l e e  charac te r i s t ics  w i l l  account for sone 
other variations. 

a t  s t a t ion  5 under condition 

B. Abson%ion SDectra 

Tie f l a r e  absorption spctra  &re shown in Figwe 9- These q e c t r a  uere 
obtaired by COD&* t h e  Globar e n e r a  curve Kith a f i r e  in the  combustor t o  t he  
energy kith no f i re  in t h e  co.&ustor, 
a m a g e d  fro= lef t  t o  right. The q e c t r a  f ron  top  t o  bottoa are for n o d  heptane, 
isooci;an.e, benzene a d  toluene. The spectra for test  conditions 40, 150, and 450 
are inaicsted on t h e  inciividcal curves. 

The saectra f o r  s ta t ions  1, 2, 3, and 4 are 

Tae absx-ption on the  short wavelmgth s ide  of t h e  4.4 micron carbon 
dioldde absorption b=sd was so=eh??et i n d e t e m n t e  because of  t h e  strong carbon 
dioxide atraspheric absorption, 
w a s  inflrenced ';J chzzzes in the  water and carbon diuxide absorption in the  opt ica l  
path outside the fLare. 

, 

, 
LScekise t h e  absorption i n  t h e  2.6 r!&cron region 

The l e t d s  of t h e  condition 450 spectra where t h e  average per  cent 
trms-ission tias low, 'miow 3 Fer csritS xere ra ther  Eeulingless s ince  in some 
cases t i s  si@ t o  m i s e  r s t i o  wss less t h a  one. 
o f  radiation irrtensity a d  t r d s s i o n  pmpert.ies) o f  t h e  f l a e s  appeared t o  
increase h i t h  t h e  averase abscmti?ity and l u d n c s i t y .  
transnittd by t h s  ccrnditisn 40 f l a e  was qu i t e  steady, noise level of t he  order 
of one s e r  c d ,  cordit ion 150 fkme, 5 per cent, t h e  condition 450 flame U$ to 
103 per cent. In t h e  czse of ezission the  m i s e  has never la rger  than a few per 
cent of the signal. 
and density of incandescest r a t e r i a l  h the fla!ze, 
scopic noise leve l  s e r e  ",suaily "noisy" k i t h  considerable f luc tua t ion  in t he  
v i s u a l  i n t a s i t y ,  pa f t i cu la r ly  a t  stations 1 and 2. 

The %oisiness* ( i h c t u a t i o n s  

In genera ,  the energp 
' 

Tr,eae r.oise e f f e d s  are presuzably t i e d  u:, Kith t h e  turbulence 
mazes h a w  a high spectro- 

Fig- 10 S;iohs t h e  absorption spectra of t h e  four' vaporized fuels at a 
pressure of L50 inches of nermry  in t h e  conbustor, as obsemed a t  s t a t ion  2. The 
raw fue l  was injected in+& t h e  cohus to r  in exactly t h g  sane nanner as it uas in 
t h e  f l z e  s5idies except t he re  was no flam. 
those used f o r  t e s t  condition 450. The i n l e t  air  t e p e r a t - l r e  was droppad t o  350 
There are sone doubts absoLt t t e  7diditp of these spectra i n  the  2.6 t o  3 dcmn 
regions because they were o b t a i n 4  before t h e  deposition of foreign mtter, 
par t icu lar ly  water, on t h e  potassiun bronide xindows was e l b b a t e d D  

Tne f u e l  and air flow r a t e s  were 

' 



Figure ll shows the  absorption spectra of t h e  water axd carbon dioxide 

These spectra were obtained by comparing 
i n  the  complete opt ica l  system, combustor included, with 40 and 450 inches of 
mercury a i r  pressure i n  the  combustor, 
a smoth Globar emission curve, simulating low water or carbon dioxide absorption; 
t o  the  experimental curve. 
which an increase in combustor pressure gave a significant decrease in transmission, 
namely, at 1-9, 2,6, and 403 micrcns. It w i l l  be noted from these  curves tha t  t h e  
approximately 20 inches between t h e  potassium bromide p la tes  contained a l a rge  part  
of t h e  effective atmospheric absorbing materials at  450 inches of mercury pressure 
(15 atmospheres) 

The mouthing was done in those spec t ra l  regions in 

V. DISCUSSION 

8. Infrared SDectra 

Inspection of Fi,wes 4 through 7 Gd ica t e s  t h a t  t h e  experimental flames 
may be c lass i f ied  in to  two groups. 
predominates and i n  the  other group black body. (continuous) type of rad ia t ion  pre- 
dominates, 
designations non-luminous and l d n o u s ,  respectively. The t a b l e  below summarizes 
t h i s  information f o r  t h e  fue ls  and operating conditions used i n  t h i s  work, 

In  one group molecular (band) type radiation 

Such a grouping agrees with the  v i s u a l  flame charac te r i s t ics  and the 

Test Condition 
Test Fuel 1 0 1 5 0 k 5 0  

Normdl Heptane non-luminous non-luminous luminous 

Isooctane 

Benzene 

Toluene 

luminous 

n 

In the  non-luminous flame spectra, the  mlecu la r  bands centered a t  1.4, 
1.9, and 2.9 microns are water vibrational emission bands. 
contribution from carbon dioxide at 2.9 microns, The band i n  t h e  4 t o  5 micron 
.region was due t o  carbon dioxide vibrational enission, 
vibrational emission bands was influenced t o  a l a rge  degree by t h e  absorption due 
t o  water and carbon dioxide and the  a i r  path i n  the  op t i ca l  train. 
a t  1.4 and%l,9 microns was due t o  water, a t  2.6 t o  water and carbon dioxide, and 
a t  4.3 t o  carbon dioxide. These absorption bands were pa r t i cu la r ly  evident i n  
the  s t a t ion  5 spectra since the  radiation traverses about 45 inches of exhaust 
gases and a i r  a t  the  same pressure as t h e  combustor. 

There may be some 

The shape of these  

The absorption 

One charac te r i s t ic  of a molecular flame emission band is  t h a t  t h e  wave 
B length distribution does not correspond t o  tha t  of t h e  a tmspher ic  absorption. 

la rge  part of t h e  en i t ted  radiation appears at longer wavelengths than t h e  
atmospheric absorption bands, 
gas i s  at a higher temperature than the  atmospheric absorbing gas. 
temperatures the  population of t h e  energy s t a t e s  of t he  molecules i s  different 
from t h a t  a t  loner temperatures. 
result ing f r o m  t rans i t ions  between the  higher energy s t a t e s  will not coincide 
e x a c t u  with the  t r ans i t i ons  bdween t h e  two lowest s t a t e so  
because, in general, t h e  molecule is an anharmonic osc i l l a to r  ra ther  than a 
harmonic oneo 
d is t r ibu t ion  and t he  flame absorption d is t r ibu t ion  can be seen by inspection o f  
f igures 4 through 9. Since t h e  anharmonicity should increase a t  higher energy 

This m a y  be q l a i n e d  by t h e  f ac t  t h a t  t h e  emitting 
A t  elevated 

The wavelengths of t he  emission or absorption 

This s i tua t ion  a r i ses  

The correspondence between t h e  mlecu la r  flame mis s ion  wavelength 
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states t h e  flame absorption and emission bands should broadon toward longer wave- 
lengths a s  the flame temperature i s  increased. This effect  i s  a l s o  evident i f  t h e  
atmospheric absorption of carbon dioxide at 4.3 microns in t h e  s ta t ion  1, 2 ,  and 3 
emission spectra i s  compared with t h e  hot exhaust gas absorption in t h e  station 5 
emission spectra. 
2, and 3 with t h e  cooler s ta t ion  4 absorption and the atmospheric absorption shows 
the same type broadening of  the absorption band w i t h  temperature. 

The spectra  of the  non-luminous flames show a Small background of con- 
tinuous radiation while in the  luminous flame spectra t h e  continuous radiation 
obscures molecular radiation. I n  t h e  cases of intennediate luminosity molecular 
radiation peaks a r e  superimposed on t h e  continuous background. The absorption 
curves show t h a t  i n  t h e  regions of strong molecular emission the absorptivity i a  
higher than the  background. 
by t h e  increased i n t e n s i t y  of t h e  continuous radiation, t h e  molecular bands become 
l e s s  pronounced. 
t i o n  i s  nearly complete t h e  continuous radiation a t  4.4 microns i s  no more intense 
t h a n  t h e  moLecular radiat ion under l e s s  luminous conditions. 
central  portion of t h i s  band t h e  emissivity is essent ia l ly  one in t h e  two-inch 
diameter combustor a t  pressures above 150 inches of mercury. 
t i o n  intensi ty  at t h i s  wavelength i s  equal t o  t h a t  of a black body operating at 
the temperature o f  t h e  flame. 

B. Black-Eody Considerations 

Also a comparison o f  t h e  flame absorption spectra a t  stations 1, 

As the  luminosity of the flame increases, as evidenced 

It w i l l  be noted that ,  for those flames where the average absorp 

Therefore, for the  

That is, the radia- 
' 

1 

.In order t o  study the  relationship between the continuous flame radiation 
i n  luminous flames and black bodv radiation the Globar emission was comared with a '1 
theoret ical  black body opera t inga t  t h e  same temperature as t h e  Globar.' Figure 12 
i s  a comparison o f  t h e  short  wavelength experimental Globar radiation curve with a 
theoret ical  1600 K Globar. The agreement between the experimental and theoretical  
Globar cumes i s  suf f ic ien t ly  close t o  w a r r a n t  t h e  comparison between t h e  wntinu- 
ous flame emission and theoret ical  black body radiation curves. 

Figure 13 shows t h e  relationship between the s ta t ion  5, condition 450, 
Figure 7, toluene flame miss ion  and t h e  theoret ical  black body radiation curves 
for 1800 K. 
absorptions a re  evident t h e  toluene flame emission curve agrees qui te  well with 
t h e  1800 K theore t ica l  curve. This indicates t h a t  at wavelendhs shorter than 6 
microns t h e  continuous radiation i s  very nearly black body in character. 

Fkcept for t h e  spectral  regions where t h e  exhaust gas and atmospheric 

The deviation between t h e  theoret ical  1800 K and t h e  s ta t ion  5 toluene 
flame miss ion  spectrum a t  wavelengths shorter than about one micron is probably 
due i n  par t  t o  smoke absorption. There appears t o  be l i t t l e  change i n  t h e  in- 
tens i t ies  at wavelengths greater than one micmn w i t h  large changes i n  exhaust 
smoke concentration although the  v is ib le  radiation w x i  almost completely oblit-  
erated i n  some cases at s ta t ion  5 by t h e  28 inch column of smoke. 
conditions of high emissivity t h e  in tens i ty  of  t h e  radiation a t  s ta t ions 1 and 2, 
with no smoke between the flame and observer, i s  comparable with the  station 5 
intensity. 
influence on t h e  amount of infrared radiation f r o m  t h e  toluene flame reaching an 
observer a t  s ta t ion  5. 

Also under 

This indicates  t h a t  t h e  smoke as such i n  t h e  exhaust had l i t t l e  

However, exanuna . t i o n  of t h e  benzene spectra i n  Figure 6, s ta t ion 5, 
shows greater infrared radiation absorption by t h e  smoke. 
condition 150 spectrum a t  wavelengths greater than 2.5 microns has about the 
same shape a s  the condition 450 spectrum, but t h e  la t te r  curve fa l ls  below t h e  
condition 150 curve a t  wavelengths less  than 2.5 microns. 
radiation in tens i ty  because of smoke increases as the  wavelength decreases. 
greater reduction i n  radiat ion intensi ty  over a broader wavelength band i n  t h e  
case of benzene probably i s  associated with t h e  amount and a la rger  par t ic le  s i ze  
of t h e  incandescent mater ia l  present i n  t h e  flame. 

In t h i s  case the  

This reduction 
The 



C. Flame Temperature 

The shape and peak wayelength of the continuous radiation f o r  t he  
~UminOus flames, as w e l l  a s  the  in tens i ty  i n  the  four t o  f ive  micron region f o r  
dll flames a t  conditions 150 and 450, indicates t ha t  t he  temperatures a re  nearly 
the  same for d l  the  flames. 
t o  be a t  t h e  same temperature as t h e  carbon dioxide gas in the  flame. 

Further, the  luminous material i n  t he  flame appears 

It has been pointed out (4,5), t ha t  t he  in t ens i ty  of t he  4.4 micron 
carbon dioxide emission would be a good measure of  t h e  flame temperatures. 
t h e  case of t he  jet combustor it appears t ha t  the residence time within the  
p r h r y  combustion zone i s  suf f ic ien t  t o  establish an apparent thermal equilibrium 
between the incandescent particles and the gas molecules. . 
combustion zone of t h e  turbulent flames observed here probably in excess of lo6 
co l l i s ions  occur per molecule, With a reasonable degree of interaction, on 
coll ision, between t r ans l a t ion  and vibrational excitation some degree of equi l i t r im 
between t rans la t iona l  and vibrational temperatures may be expected. 

f o r  the  two inch combustor at pressures above 150 inches of mercury and would 
approach one a t  lower pressures in l a rge r  sca le  combustors, the  h t e n s i t y  of the  
carbon dioldde 4.4 micron radiation should serve as  a good rad ia t ion  thernoneter. 
It would be  unaffected by the  luminosity of t h e  flame and t h e  temperature of the 
combustor w a l l s  seen throu& the  flame. 
s l i gh t ly  longer than the  atmospheric absorption band the measurement would be 
independent of t h e  external op t ica l  path lengths. 
toward longer wavelengths with increase i n  temperature and t h e  in t ens i ty  increases 
as a power greater than one with t h e  temperature, the  re la t ive  accuracy o f  such a 
pyrometer should increase with increased temperature. 
pa r t i c l e s  appear t o  be i n  thermal equilibrium with the  gas it would be reasonable 
t o  expect the carbon dioxide mlecu le s  t o  be nearly in thermal equilibrium with 
other gases i n  t h e  flame. 

In 

Within t h e  p r i m a s y  

Since the  emissivity of t h e  carbon dioxide radiation i s  e s sen t i a l ly  one 

By making t h e  msasurement a t  a wavelengLh 

Since the  emission ban6 broader3 

Since t h e  incandescent 

Figure ll+ shows t h e  theore t ica l  relationship between the  in t ens i ty  of the  
4.4 micron emission (emissivity of one) and temperature. 

D. T o t a l  Radiation Measurement 

A t  a temperature of 1800 K about 90 per  cent of t he  radiation emitted by 
a black body w i l l  be emitted a t  wavelengths shorter than f i v e  microns. 
centage drops t o  about 85 per cent a t  1600 K and r i s e s  t o  more than 95 per cent a t  
2500 IC. 
uncertainty induced by ignoring radiation of wavelengths grea te r  than abut f i v e  
microns nill not seriously prejudice our results.  
all energy integrations are over t h e  range 0.87 t o  5.8 microns. 

This per- 

Therefore, in studying t h e  t o t a l  radiant energy from luminous flames the  

I n  the discussions t h a t  follow 

A source of e r ror  is the  contribution of energy by t h e  flame tube which 
is  measured as flame radiation. In Figure 13 t h e  700 K curve shows the  scale o f  
t he  contribution t o  be expected from t h e  flame tube if t h e  area of t h e  flame tube 
observed by t he  spectrophotometer i s  t h e  same as  t h e  area of t h e  flame observed. 
k t h e  case of non-lrrminous flames t h i s  mag become a sizable portion o f  t he  totdl 
radiation a t  wavelengths shorter than 5.8 microns. 

Considering t h e  non-luminous flame spectra, condition 4Q in Figures 4 
through 7 t h e  continuous radiation present may be appro-tely synthesized from 
t h e  700 IC and 1800 IC curves of Figure 13. 
radiation in t h e  0-8 t o  5.8 micron region due t o  molecular radiation of carbon 
dioxide and water together with the  continuous radiation due t o  the  flame tube 
w a l l s  (700 K) end t he  incandescent material i n  the  flame (1800 K) versus observa- 
t i o n  s t a t ion  along t he  flame tube for t h e  four  fuezs. 

Figure 15 i s  a plot of t he  per cent of 

The curves a r e  labeled a s  - 



t o  the sources of t h e  rad ia t ion  (GO2, h20, Fe, and C ) .  
contributions due t o  t h e  flame tube and t h e  incandescent material, respectively. 

Fe and C represent t he  

Figure 1 6  shows t h e  var ia t ion  of rad ia t ion  in tens i ty  with position along 
t h e  axis of t h e  combustor f o r  individual fue l s  at  the three  t e s t  pressures, The 
data are for  observation s ta t ions  1, 2, 3, and 4* 

Figure 17 shows the  var ia t ion  o f  radiation in tens i ty  with f u e l  type a t  
test conditions 40, 150, and 450 f o r  observation s t a t ions  1, 2, 3, and 5. 
should be noted t h a t  t h e  t o t a l  radiation in tens i ty  at s t a t ion  5 decreased for t he  
two aromatic f u e l s  when t h e  combustor pressure was raised f r o m  150 t o  450 inches 
of mercury, 
a t t r ibu ted  to t h e  smoke in t h e  exhaust gases between t h e  flame and s t a t ion  5. 

It 

T h i s  e f f ec t  was most pronounced for  benzene. This probahly can be 

The information in Figure 18 is of a more speculative nature. 
assumed tha t  t he  density and character of t h e  flame would not be changed in going 
t o  l a rge r  more p r a c t i c a l  sized combustors. The scaling f ac to r s  used were 3 f o r  
diameter and ZX f o r  length  of t h e  primary combustion zoneD Figure 18 then shows 
f o r  a hypothetical six-inch combustor t h e  radiation in tens i ty  var ia t ion  With f u e l  

corresponding t o  s t a t ions  1, 2, 3, and 5 i n  t h e  laboratory scale combustor. The 
s t a t i o n  5 s i tua t ion  ind ica tes  t h e  radiation in tens i ty  t o  which a turboje t  engine 
turbine nozzle might be exposed. These data were fur ther  simplified by assuming 
tha t  t h e  paraf f in ic  fue ls ,  normal heptane and isooctane, were nearly alike and 
t h a t  t h e  t w o  aromatic fuels, benzene and toluene, were nearly alike. 

It was 

' type a t  comparable operating conditions for various posit ions around t he  flame 

These extrapolations indicate tha t  a t  low pressure and high velocity, 
test condition 40, t he re  appears t o  be l i t t l e  sign5ficant var ia t ion  With fuel 
type. A t  intermediate pressure with reduced velocity, t e s t  condition 150, there 
were significant differences in the  radiant energy i i t t e d  by paraf f in ic  &d 
aromatic flames as seen from s t a t ions  1, 2, and 5 (nozzle). 
velocity the  same, test condition 4500 there  appears t o  be l e s s  change i n  rad ia t im 
in tens i ty  with f u e l  type. 
were not la rge  f o r  any operating condition. 

a t o t a l  radiation pyrometer using a black detector t he  transmission characterist ics 
of a combustor window material  are important. If  t h e  rad ia t ion  is limited t o  wave- 
lengths less than 2.5 microns by t h e  use of Pyrex or Vycor window material, then 
t h e  amount of radiation measured m y  give l i t t l e  indication of t he  ;uno& of 
radiation present. 
is shown in Figure 19. 
measured t o  t h e  t o t a l  w i l l  vary from a few per cent (about 2) t o  about 60 per cent 
depending upon t h e  luminosity of t h e  flame, 
radiation in a two-inch burner m i e s  over wide limits from 0.01 t o  essent ia l ly  
one. 
f o r  small scale flames l i e s  a t  wavelengths less than 2.5 microns. 

A t  high pressure -4 th  

A t  s ta t ion  3 t h e  differences between t h e  two fue l  types 
I 

, 

In  ~ a k i n g  instrumental measurements of t o t a l  radiant energy means o f  

The transmission spectrum of a typ ica l  Qycor combustor window 
For 1800 E flame the  r a t io  of the  amount of *radiation 

The emissivity of t h e  continuous 

1' 

In t he  non-luminous flame only a s m a l l  percentage of t he  molecdar radiation 

As pointed out  previously about 90 per cent of t h e  continuous radiation 
from an 1800 K black body is  at wavelengths shorter than 5.5 microns. 
75 per cent of t h e  molecdar  radiation from the two-inch combustor has wavelengths 
shorter than t h i s  5.5 microns. Thus, based on the  combustor spec t ra l  data shorn 
here, if observations of flame radiation a re  made through sapphire windows the  
data should give f a i r l y  r e l i ab le  indications of t h e  t o t a l  amount of radiation 
present. However, if the observations a re  t o  be made through long columns of 
exhaust gases t h e  absorption of the  smoke must be taken in to  account. 
mission spectrum of typical sapphire and quartz combustor windows are  shown 
Figure 19- 

Probably 

The trans- 

! 



. There would be E ~ E ?  z&r/ar.-,agr f~ 5~;-::&ir;g :,b.: z:&t;:L< -,.i~<sj.en&ns 
t o  t e n  microns by using calcium f luor ide  windoxs, 
cent of t h e  1800 K continuous radiztion. 
molecular radiation would be included, However, the  gain in t h e  l a rger  fraction 
of energy obtained would probably not offset  the  advantages of using t h e  nore 
rugged sapphire rather than t h e  so f t  and somewhat fragile calcium f luor ideo  

E. Combustion Process 

Tnis :io:;ld i ~ l c l d e  abob% 98 per 
A corresponding la rger  proportion o f  the 

In the  infrared absorption spectra of t h e  experimental flames, Figure 9, 
t he  absorption due t o  carbon-hydrogen stretching vibration a t  3.4 microns appears 
i r regular ly  and is not strong compared t o  the raw fue l  absorption in Figure 10. 
The 3.4 micron absorption i s  recognized o n l y  a t  t e s t  conditions 40 and 150, M h e q  
it appears most frequently a t  s ta t ions  1 and 2. 
t he  combustion zone t h e  hydrogen is immediately stripped f r o m  t h e  carbon chains by 
lnolecular co l l i s ion  o r  radiation absorption (vibrational excitation).  

This suggests t ha t  upon entering 

A comparison o f . t h e  radiation spectra of the experimental flames and the  
absorption spectra of the fuels indicates t ha t  t h e  r ad ia t ive . t r ans fe r  of energy 
from the  flame t o  t h e  fue l  is a somewhat inef f ic ien t  process. 
evident i n  non-luminous flames where the molecular rad ia t ion  bands of t h e  flame do 
not coincide with t h e  absorption bands of t h e  fuel. In  t h e  lrmrir?ous s i tua t ion  the  
fue l  absorbs over spec t ra l  regions containing about 10 per  cent of the  available 
energg, This is the r e su l t  of t h e  high intensity of t he  corrtinuous radiation in 
t he  3.4 micron region. 

This k, par t icu lar ly  

VI. coNcLusIoNs 

The following are short restatements of what a r e  believed t o  be the  
significarrt findings of this work, 
combustor used, under t h e  par t icu lar  expex-imental conditions o f  t h i s  stGdy. 

They are r e l a t ive  t o  the l a b o r a t o q  scale j e t  

(1) Non-luminous flames were characterized b 3  discontinuous radiation, 
The emissivity in these molecular b d s  i.e., band emission of molecular o r ig in .  

approached one 
verse emissivity, of the  infrared spec t ra l  regicn from 1 t o  1 5  microns i n  wave- 
length, was approximately 0.03. 

in the  carbon dioxide, 4 t o  5 micron, bind. The average trans- 

(2) Luminous flames were clkaracterized by a predominance of continuous 
radiation, which was black body i n  nature. For intermediate v a u e s  of luminositr 
t he  discontinuous molecular radiation was evident, superimposed on the  continuous 
black body radiation, 
f r o m  a few hundredths t o  nearly one, depending upon experimental conditions. 

The transverse emissivity of the  continuous radiation varied 

( 3 )  I n  general, t h e  emissivity of both t h e  mn-luminous and luminous 
flames increased with combustor pressure. 

( 4 )  The emissivity o f  t he  flames varied with fue l  type when burned 
under constant combustor operating conditions, I n  general, the en i s s iv i t i e s  of . 
t he  two aromatic fuels,  benzene and toluene, appeared t o  be higher than those of 
t he  two paraffinic fuels,  normal heptane and isooctane, 
at t h e  highest combustor operating pressure, 450 in. Hg abs. 

T h i s  difference decreased 

( 5 )  In  luminous flames, t he  heat transferred by radiation t o  combustor 
flame tubes, etc., was an appreciable portion of the total energy released. 
radiative power varied from l e s s  than one per cent t o  greater than t e n  per cent of 
t h e  t o t a l  energy released, depending upon fue l  type and operating conditions. 

The 



. ( 6 )  Flame “noisiness“ (fluctuations of radiat ion in tens i ty  and trans- 
mission propert ies)  was a d i rec t  function of t he  carbon forming tendency of  t h e  
flame, 

(7) The temperature of  the flames studied here (fuel-air r a t io  0.01) 

The temperature was in t he  neighborhood of 1800 H (2800 F) for 
remained essent ia l ly  constant over a large range of combustor operating cod i t ions  
and fue l  types, 
t h e  par t icular  conditions of t h i s  study, 

(8 )  The emissivity of the  carbon dioxide 4 t o  5 micron molecular 
emission was nearly one over a large range of operating conditions and f u e l  typeso 
This indicates t ha t  the  in t ens i ty  of radiat ion i n  t h i s  spec t ra l  region i s  a good 
indicat ion of the  flame temperature and is essent ia l ly  independent of the  lunbos i@ 
of t h e  flame. 

(9) The temperatures of the  luminous material in t h e  flame and the 

(10) 

carbon dioxide gas appear t o  be very nearly t h e  same. 

N a r r o w  band-pass pyrometers adjusted for, say, t he  4.4 micron 
region should serve a s  good flame themmete r s  if the  flame cross section is 
su f f i c i en t ly  la rge  (Le., a t  l e a s t  two inches thick). 

long wavelengths with increase in gas temperatures, making MITOW band-pass pyro- 
m e t r y  independent of atmospheric absorption. 
more material being present, t h e  in tens i ty  of emission (i.e., emissivity) and 
absorption w i l l  increase with pressure a t  these longer wavelengths. 

Total rad ia t ion  pyrometers must include the  1 t o  5 micron spectral  
region t o  give r e l i ab le  indicat ions of the  total infrared radiat ion d t t e d  by the  
flame. Window material f o r  such pyrometry is impofiarrt. Sapphire windows 
give substant ia l ly  more reliable re su l t s  than quartz without large luminosity and 
smoke corrections. 

(ll) The mlecular d s s i o n  and absorption bands rsrill broaden toward 

In addition, as a consequence of 

(12) 

(13) 

(U+) 

L i t t l e  hydrocarbon a s  such was present in  t h e  flame zone. 

Radiative energy t ransfer  from the  flame zone t o  the  hydrocarbon 
fuel was r e l a t ive ly  inef f ic ien t  due t o  t h e  non-coincidence of the  absorption spectm 
of  t h e  fue l  and the  eniss ion spectra of t h e  flame. This was more pronounced~b the  
case of non-lmxhous flames than  in l*ous flameso 
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TABLE I 

CHMACTWISTICS OF TEST FUELS 

(Technical Grade Products) 

Normal 
Heptane Isooctane 

Specific Gravity, 60/60F 

ASTM Distillation, F 
Initial B o i l i n g  Poilit 
50 Per Cent Evaporated 
Dry P o b t  

Low Heating Value, Btu/lb 

Reid Vapor Pressure, lbs/sq in  

Latent Heat of Vaporization, Btu/lb 

Surface Tensionp So F, Dynes/cm 

Kinematic Viscosity, 100 F, cs 

0.689 

203 
206 
209 

19 J75 

1-62 

156.8 

1707 

0 053 

0.692 

205 
207 
208 

19r065 

1-71 

132.2 

18.9 

0.63 

P Benzene Toluene 

0.884 0.872 

230 

176 177 232 
176 231 

17,259 17,425 

3.22 1-03 

1863 1773 

26,s 25.9 

0.60 0.58 

/ 



Test Condition 

Combustion System 
Fmironment Simulated 

Combustor Pressure, 
in. Hg abs 

Combustor In l e t  A i r  
Temperatura, F 

Combustor Inlet A i r  
Velocity, ft/sec 

lbsFuel /LblLi r  , 

F2lel-Ai.r Ratio, 

* 
Rami& 

40 

300 

350, 

0.010 

150 150 

Turbojet, Low Turbojet, E i g i  
Pressure Ratio Pressure ?k.t5.> 

150 450 

400 400 

100 100 

0,010 0.010 

TAEaE I1 

SCHEDULE OF OPFXAT3.C CONDITIOIG 
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NOTE: FLAME SPECTRA L A B E L E D  ACCORDING TO COMBUSTOR PRESSIIRE 
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NOTE: FLAME SPECTRA L A B E L E D  ACCORDING TO COMBUSTOR PRESSURE (IN. HG ABS.) 
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NOTE: FLAh4IE SPECTRA L A I I E L E D  ACCORDING TO COMDUSTOR PRESSURE (111. HG A E b )  

STATION I 

4 50 

1 

5 

STATION 2 

I 

STATION 3 

MICRONS 

FIGUCF 7 

STATION 5 

5 



S T A T I O N  4 
2 

N O R M A L  H E P T A N E  

- 
I , , I  I I I I  

B E N Z E N E  

I I 

TOLUENE 

- 

2 3. 4 3 
MICRONS 

FlGUiiE 8 
EXHAUST GAS EHISSION SPECTR4 

z 
I- 

2 0  

n 
a 

- 

0 

2 

0 



STATION I STATION 2 STATION 3 STATION 4 

MICRON 5 

FIGIIPE 9 
FLAIAE ACSORPTION SP?=_CTI?A 

100 

50  

0 

100 F 

50 

0 



STATION 2 

I 

l o o  

1 

50 

I 
z 

v) 

0 

5 

d 
0 2  

MICRONS 

FIGUPE 10 
ATCMIZED FUEL ADSORPTION SPECTRA , 

V 

STATION 2 

1 

FIGURE 11 
AIR PATH bRSOFPTICN SPECTRA 

00  

0 



AlISN31NI NOIIVIOVY 



w 
3 
I- . <  
a 

6 a 
I 
W 
I -  

u) > 

> 
u) 

z W 
!- 

t 

z 

. 



NORMAL HEPTANE r--l 
I I 

1 I S O O C T A N E  - -13 
TOLUENE 

- -10 

- 

dT4TION 
F I G U R E  I6 

R A D I A T I O N  INTENSITY VS P O S I T I O N  ALONG- COMEUSTOR 

- 

0 NORMAL HEPTANE ISOOCTANE BENZENE 

# STATION I STATION 3 
(NORMAL TO BURNER AXIS) (NORMAL TO BURNER AXIS) 

20 a lo*: c 
w 

STATION 2 P 

0 
IO 5 

a 

IS 
(NORMAL TO BURNER AXIS) 

P 

5 

TEST CONOlTlON 

FIGURE 17 
RADIATION INTENSITY VS O P E R A T I N G  CONDITION 



NOlSSlYYSNVYl LN33b13d 
0 

h l ~  t I I 4 t I J 

7 
51 I i 

& a  

k 

L 

z W 

f 
z 
0 


